Improving the Expression of Recombinant Proteins in E. coli BL21 (DE3) under Acetate Stress: An Alkaline pH Shift Approach
نویسندگان
چکیده
Excess acetate has long been an issue for the production of recombinant proteins in E. coli cells. Recently, improvements in acetate tolerance have been achieved through the use of genetic strategies and medium supplementation with certain amino acids and pyrimidines. The aim of our study was to evaluate an alternative to improve the acetate tolerance of E. coli BL21 (DE3), a popular strain used to express recombinant proteins. In this work we reported the cultivation of BL21 (DE3) in complex media containing acetate at high concentrations. In the presence of 300 mM acetate, compared with pH 6.5, pH 7.5 improved cell growth by approximately 71%, reduced intracellular acetate by approximately 50%, and restored the expression of glutathione S-transferase (GST), green fluorescent protein (GFP) and cytochrome P450 monooxygenase (CYP). Further experiments showed that alkaline pHs up to 8.5 had little inhibition in the expression of GST, GFP and CYP. In addition, the detrimental effect of acetate on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by the cell membrane, an index of cellular metabolic capacity, was substantially alleviated by a shift to alkaline pH values of 7.5-8.0. Thus, we suggest an approach of cultivating E. coli BL21 (DE3) at pH 8.0 ± 0.5 to minimize the effects caused by acetate stress. The proposed strategy of an alkaline pH shift is a simple approach to solving similar bioprocessing problems in the production of biofuels and biochemicals from sugars.
منابع مشابه
Design and Construction of ctxB-gfp-stxB Gene Cassette and Investigation of Its Expression in E. coli Bl21 (DE3)
Background & Objective: In order to enhance the expression of soluble proteins and facilitate their purification and development of multi-functional polypeptide , chimerical recombinant proteins have been invented . The purpose of this study was to construct ctxB-gfp-stxB gene cassette to measure the uptake and excretion of chimerical antigen in future studies. Materials & Methods: After prep...
متن کاملInhibition of AckA and Pta Genes Using Two Specific Antisense RNAs Reduced Acetate Accumulation in Batch Fermentation of E. coli BL21 (DE3)
Expression of foreign proteins in E. coli is normally inhibited by exogenous production of acetate. To overcomethis problem, various strategies have been proposed and tested to reduce the extent of acetate accumulation.Although these strategies can improve the outcome, the implementation of their proposed techniquesis not practical. Because to achieve optimal results, it requi...
متن کاملEffects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli
Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...
متن کاملCloning and Sequence Analysis of Gene Encoding OipA from Iranian Clinical Helicobacter pylori
Background: Outer inflammatory protein A (OipA) is one of the important adhesins of H. pylori and a valuable candidate for vaccine development. Its gene is under "on-off" switch status which correlates with OipA protein expression. Objectives: We aimed to obtain a recombinant OipA clone (with "on" status) from an Iranian clinical isolate. Materials and Methods: A clinical H. pylori-isolate demo...
متن کاملExpression, purification, and immunization of a chimeric protein containing immunogenic regions of flagellin and intimin proteins against E. coli O157: H7
Introduction: Enterohemorrhagic Escherichia coli (EHEC) and serotype O157: H7 is one of the most important diseases causing diarrhea. Shiga-like toxin secreted by the bacteria destroys epithelial cells and, in acute cases, causes hemolytic uremic syndrome (HUS). Antibiotic therapy is not effective against this pathogen, because it increases the production of Shiga toxin. Designing chimeric immu...
متن کامل